1,299 research outputs found

    Comparing external ventricular drains-related ventriculitis surveillance definitions

    Get PDF
    OBJECTIVETo evaluate the agreement between the current National Healthcare Safety Network (NHSN) definition for ventriculitis and others found in the literature among patients with an external ventricular drain (EVD)DESIGNRetrospective cohort study from January 2009 to December 2014SETTINGNeurology and neurosurgery intensive care unit of a large tertiary-care centerPATIENTSPatients with an EVD were included. Patients with an infection prior to EVD placement or a permanent ventricular shunt were excluded.METHODSWe reviewed the charts of patients with positive cerebrospinal fluid (CSF) cultures and/or abnormal CSF results while they had an EVD in place and applied various ventriculitis definitions.RESULTSWe identified 48 patients with a total of 52 cases of ventriculitis (41 CSF culture-positive cases and 11 cases based on abnormal CSF test results) using the NHSN definition. The most common organisms causing ventriculitis were gram-positive commensals (79.2%); however, 45% showed growth of only 1 colony on 1 piece of media. Approximately 60% of the ventriculitis cases by the NHSN definition met the Honda criteria, approximately 56% met the Gozal criteria, and 23% met Citerio’s definition. Cases defined using Honda versus Gozal definitions had a moderate agreement (Îș=0.528; P&lt;.05) whereas comparisons of Honda versus Citerio definitions (Îș=0.338; P&lt;.05) and Citerio versus Gozal definitions (Îș=0.384; P&lt;.05) had only fair agreements.CONCLUSIONSThe agreement between published ventriculostomy-associated infection (VAI) definitions in this cohort was moderate to fair. A VAI surveillance definition that better defines contaminants is needed for more homogenous application of surveillance definitions between institutions and better comparison of rates.Infect Control Hosp Epidemiol 2017;38:574–579</jats:sec

    Anti-melanocortin-4 receptor autoantibodies in obesity

    Get PDF
    Background: The melanocortin-4 receptor (MC4R) is part of an important pathway regulating energy balance. Here we report the existence of autoantibodies (autoAbs) against the MC4R in sera of obese patients. Methods: The autoAbs were detected after screening of 216 patients' sera by using direct and inhibition ELISA with an N-terminal sequence of the MC4R. Binding to the native MC4R was evaluated by flow cytometry and pharmacological effects by measuring adenylyl cyclase activity. Results: Positive results in all tests were obtained in patients with overweight or obesity (prevalence: 3.6%) but not in normal weight patients. The selective binding properties of anti-MC4R autoAbs were confirmed by surface plasmon resonance and by immunoprecipitation with the native MC4R. Finally it was demonstrated that these autoAbs increased food intake in rats after passive transfer via intracerebroventricular injection. Conclusion: These observations suggest that inhibitory anti-MC4R autoAbs might contribute to the development of obesity in a small subpopulation of patients

    Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants

    Get PDF
    The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response

    Using springbok (Antidorcas) dietary proxies to reconstruct inferred palaeovegetational changes over 2 million years in Southern Africa

    Get PDF
    The reconstruction of past vegetation and climatic conditions of the Cradle of Humankind, Gauteng Province, South Africa, has been approached using various proxies (such as micromammals, speleothems, faunal and floral presence and stable carbon isotopes). Elisabeth Vrba's seminal studies (1974; 1975) on the fossil record of this region indicated dramatic faunal turnover based on species extinction and speciation data. This turnover was thought to have been driven by increasing aridity and spreading grasslands. These reconstructions however, are continuously being refined and adapted in light of advancing techniques (such as dental microwear textural analysis) and terrestrial proxies, such as speleothems. However, more recent studies show varying proportions from wooded towards more grassland-dominated habitats, with the most common reconstruction being the heterogeneous ‘mosaic’ habitat. Here we re-evaluate the findings of a transition from woodland to grassland conditions in the fossil record from Member 4 Sterkfontein to Member 5 Sterkfontein and the deposits of Swartkrans. To approach the palaeovegetation changes through time via a different angle, we focus on the diet of the springbok (genus Antidorcas), represented throughout this temporal period from geological members dating from 2.8–0.8 Ma. We use detailed dietary methods (dental linear measurements, mesowear, microwear, and stable carbon isotope analysis) to explore past changes in diets of springbok that can be used to indicate the prevailing vegetation conditions. Our results presented here broadly agree with previous palaeoenvironmental reconstructions, in indicating increased grassland post ca 1.7 Ma, with some suggestion of more heterogeneous habitats for Swartkrans Member 2 (ca 1.65–1.07 Ma). We find that there is support for the implementation of a multi-disciplinary approach to produce more accurate and robust reconstructions of past diets and by extension, of palaeovegetation conditions, if the selected herbivore species is a mixed-feeder, like the springbok

    Recent origin of low trabecular bone density in modern humans

    Get PDF
    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations

    Towards a Mg lattice clock: Observation of the 1S0−^1S_{0}-3P0^3P_{0} transition and determination of the magic wavelength

    Full text link
    We optically excite the electronic state 3s3p 3P03s3p~^3P_{0} in 24^{24}Mg atoms, laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift and the transition frequency to be 468.463(207) \,nm, -206.6(2.0) \,MHz/T2^2 and 655 058 646 691(101) \,kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also developed a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift and discuss a clock based on bosonic magnesium.Comment: 5 pages, 3 figure

    Shear induced instabilities in layered liquids

    Full text link
    Motivated by the experimentally observed shear-induced destabilization and reorientation of smectic A like systems, we consider an extended formulation of smectic A hydrodynamics. We include both, the smectic layering (via the layer displacement u and the layer normal p) and the director n of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in non equilibrium situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between n and p, which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier approach [Rheol. Acta, vol.39(3), 15] and include the cross couplings with the velocity field and the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of various material parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations, we find a good qualitative agreement.Comment: 15 pages, 12 figures, accepted for publication in PR

    The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    Get PDF
    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration

    APXS ANALYSES OF BOUNCE ROCK: THE FIRST SHERGOTTITE ON MARS

    Get PDF
    During the MER Mission, an isolated rock at Meridiani Planum was analyzed by the Athena instrument suite [1]. Remote sensing instruments noticed its distinct appearance. Two areas on the untreated rock surface and one area that was abraded with the Rock Abrasion Tool were analyzed by Microscopic Imager, Mossbauer Mimos II [2], and Alpha Particle X-ray Spectrometer (APXS). Results of all analyses revealed a close relationship of this rock with known basaltic shergottites

    Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    Get PDF
    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani
    • 

    corecore